

Update on High-End Computing Research and Development

Steve Wallach swallach@chiaro.com

PITAC Recommendations

- Fund research into innovative computing technologies and architectures.
- Fund R&D in software to improve the performance of high-end computing.
- Drive high-end computing research by trying to attain sustained petaflops/petaops on real applications by 2010 through a balance of hardware and software strategies.
- Fund the acquisition of the most powerful high-end systems to support scientific and engineering research.
- Expand the High-End Computing Working Group's coordination process to include all major elements of the government's investment in high-end computing.
- Increase funding for high-end computing R&D and acquisitions: Add \$270M in FY2000 ... Add \$430M in Fy2004.

Recommendation: Fund research into innovative technologies and architectures

- Funding levels have increased, from 181.3M (FY2000 estimate) to 254.9M (2001 request)
- Novel and innovative architectures are being explored
 - Beowulf (NASA): Clusters of sovereign workstations to achieve high-performance computing
 - MVICH (DOE/NERSC): High-performance communications for cluster computing
 - DPSS (DARPA/DOE): Scalable high-end distributed parallel storage systems

Recommendation: Fund research into innovative technologies and architectures

- Long-term technological breakthroughs are being funded
 - Superconducting materials for computing/storage
 - Quantum mechanical & optical computing/storage
 - Storage devices based on DNA-like molecules
 - Very large scale integration of photonics for intra-chip and inter-chip communications
 - Three-dimensional multi-chip modules
 - Optical tape: 1 terabyte on a hand-held cartridge

Recommendation: Fund research into innovative technologies and architectures

Examples of HEC RE&D funding (FY2001 request \$M)

NSF	Computer-Communications Research	25.91
	Revolutionary Computing, as part of:	
	Experimental & Integrative Activities	17.38
	Information Technology Research	34.71
DARPA	Amorphous & Biological Computing	15.50
	Beyond Silicon	24.00
NSA	Supercomputing Research	30.10
	Superconducting Research	2.80
NOAA Advanced Scalable Computing		
ODUSD(S&T) University Research Initiative		
5/21/01	President's Information Technology Advisory Committee	

Recommendation: Fund R&D in software to improve the performance of high-end computing

- High-end software funding has increased
 - System software (operating systems, etc.):
 Combined NSF, DOE/OS, NASA, DARPA, NIH funding increased by 56.3%, from 86.7M
 (FY2000 estimate) to 135.4M (FY2001 request)
 - Similar increases for software support (e.g., reusable open software libraries) and application algorithm support
- These levels attract/retain good researchers

Recommendation: Drive high-end computing research by trying to attain sustained petaflops/petaops on real applications by 2010 through a balance of hardware and software strategies

- This will require significant advances at <u>all</u> levels: hardware, software (system, support, application), and process control/monitoring/measurement
- Hardware/architecture funding has stayed constant, 62.2M (FY2000 estimate) to 63.6M (FY2001 request), or about one-half the level for software

Recommendation: Fund the acquisition of of the most powerful high-end systems to support scientific and engineering research

- NSF is primary funder via PACI
 - San Diego Supercomputer Center (1.3 teraflops)
 - U Illinois at Urbana-Champaign (800 gigaflops)
 - Eight smaller sites
 - Computing power made available to US researchers
- NSF Distributed Terascale Facility procurement
- Significant increases in high-end infrastructure: Combined infrastructure budgets of NSF, NASA, DOE/OS, NIH, NOAA, EPA, NIST are up 74% (FY2000 estimate to FY 2001 request)

Recommendation: Expand the High-End Computing Working Group's coordination process to include all major elements of the government's investment in high-end computing

- National Nuclear Security Administration (NNSA) is an active participant in High-End Computing Coordinating Group (HEC/CG)
- NNSA HEC budget now included in Blue Book, and is loosely coordinated with the HEC/CG
- NNSA official is HEC/CG co-chair

Recommendation: Increase funding for high-end computing research and development and acquisitions. Add \$270M in FY2000 ... Add \$430M in Fy2004

	FY1999	FY2000	FY2001	FY2002	FY2003	FY2004
Total PITAC HEC Budget Recommendations (Change from FY1999)		+270M	+305M	+350M	+390M	+430M
PITAC HEC R&D Budget Recommendation		+180M	+205M	+240M	+270M	+300M
PITAC HEC Infrastructure Budget Recommendation		+90M	+100M	+110M	+120M	+130M
HEC R&D plus HEC Infrastructure Budgets	389.9M	504.9	705.9			_
(not including HEC Applications)	(FY2000 estimate)	(FY2001 estimate)	(FY2001 request)			
Change from FY 1999		+115M	+316M			-